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Finite Element Method (FEM)

The finite element method (FEM) is the oldest numerical technique applied to engineering
problems.  FEM itself is not rigorous, but when combined with integral equation
techniques it can yield rigorous formulations.  Advantages of FEM:

1.  Sparse matrices result (as opposed to MM for which dense matrices result).  Sparse
matrices allow the application of a wide range of fast matrix solvers.

2. Its application involves discretization of the computational domain, and therefore is
adaptable to a wide range of geometries and material variations.

Traditional applications like civil and mechanical engineering use scalar node basis
functions.  Vector edge basis functions are more appropriate for electromagnetic
problems because

• EM problems require solutions of vector quantities
• Volume currents are required, not just surface currents
• Continuity and boundary conditions are applied to edges, not just nodes (points)
• Spurious solutions occur with nodes
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FEM Formulation (1)

The figure illustrates the generic problem.  The computational region is the enclosed
volume, Ω.  The vector wave equation is the starting point for the FEM solution
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A testing procedure is used similar to the method of moments.  Each side is multiplied by
a testing (weighting) function, and integrated.  Using the inner product notation

Ω•= ∫
Ω

dWAWA
rrrr

,

where   
r 

W  is the test function and A
r

 a
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of the wave equation should be equal
and the difference zero.  In practice the
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FEM Formulation (2)

Green’s first vector identity is used to eliminate the double curl.  The result is referred to
as the weak form of the wave equation.  Testing the weak form gives the following
equation:
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 for scattering problems, but not for antenna problems.  The unknown
quantity is the electric field, E

r
.  A dual equation can be derived for H

r
.

E
r

 and H
r

 are the total fields ( si HHH
rrr

+=  and si EEE
rrr

+= ).  The incident fields are
known; the scattered fields are unknown.

The numerical solution for the integral equation begins by discretizing the volume into
subdomains.  The fields will be computed on the boundaries of the subdomains.

In the equation for E
r

, integrals over the PEC portions of the surfaces vanish.  If the
exterior surface (the terminating boundary) is not PEC then a boundary condition must be
imposed. (For scattering problems, there should be no reflection at this boundary because
it is merely a computational surface, not a physical surface.)
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FEM Formulation (3)

The surface integral for the terminating boundary can be handled in several ways:

1. For radiation problems where the source is inside, a perfectly matched layer (PML)
can be used just inside of the boundary.

2. The surface integral can be replaced by one that incorporates a general boundary
condition.

3. An alternative is to use the method of moments to find the equivalent currents on the
outer boundary.  However, since the surface currents couple with the fields inside,
the MM matrix equation must be solved with the FEM matrix equation.

Example: An infinitely long conducting cylinder (arbitrary cross section) using a PML
termination
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FEM Formulation (4)

For the discretized volume with a total of N  subdomains, each with Ne  edges, the
scattered field can be expanded into a series of basis functions with unknown expansion
coefficients, e

mE .  The field inside subdomain e can be expressed as

  
r 
E e = Em

e r 
W m

e

m=1

Ne
∑    (  e = 1,…,N )

where the expansion coefficients are determined by solving the matrix equation:
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The overbar is a column vector and the double overbar a two square matrix.  The vector
and matrix elements are of the form
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Perfectly Matched Layers (1)

The electrical characteristics of a material are completely described by complex
permittivity and permeability matrices
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Using this notation, Maxwell’s equations can be written in matrix form.  For example,
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For a homogeneous isotropic medium: cba == .
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Perfectly Matched Layers (2)
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As in the standard solution of the plane wave reflection coefficients, the fields are
written for the two media and tangential components equated at the boundary.  However,
the dispersion relationship must be used to determine under what conditions the reflection
coefficients will be zero.  The result is1
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1See S. D. Gedney, “An Anisotropic Perfectly Matched Layer-Absorbing Medium for the Truncation of FDTD Lattices,” IEEE Transactions
on Antennas & Propagation, vol. 44, no. 12, Dec. 1996.



Version 4 (Nov. 2003) 8

Perfectly Matched Layers (3)

The reflection coefficients will be zero if

0= TETM ==⇒ RRba

and independent of angle if 1=bc .  Therefore,

1coscos =⇒= bcbc it θθ

Choose 
jBA

cjBAba
−

=−=
1

and =  (A and B are real).  A good choice is 1≈= BA .

Features of the PML:

1. It is a reflectionless medium for all frequencies and incidence angles
2. Not physically realizable, but it is used as a termination for computational domains in

numerical solutions
3. B controls the absorptivity of the layer
4. The PML represents a perfectly matched uniaxial anisotropic medium
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Grid Termination Methods (1)

The two most common methods for terminating the computational domain are:

(1) Perfectly Matched Layers (PMLs) – The grid is bounded by a layer of nonreflecting
material.

(2) Absorbing Boundary Conditions (ABCs) – A boundary condition is applied to the
field at the edge of the grid so that the radiation conditions are satisfied (the transmitted
field decays to zero at infinity and no reflection at the computational boundary).  ABCs
take on various forms and are also referred to as transparent boundary conditions and
radiation boundary conditions.

Both can be applied conformally or non-conformally.
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Grid Termination Methods (2)
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The grid can be terminated by a perfectly matched layer with a metal backing.  The
thickness and loss of the layer are determined so that the reflections from it are negligible.

• This approach is convenient but requires additional nodes in the computational
domain (i.e., the nodes inside of the PML)

• Typical values are εr = µr =1− j  and PML thickness d = 0.15λo
• The closest points on the target should be 1λo − 2λo  from the PML
• Conformal layers are preferred because they minimized the number of additional

nodes
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Absorbing Boundary Conditions (1)

The electric and magnetic fields satisfy the vector wave equations

02 =−×∇×∇ ψψ rr k

where   
r 

ψ   is either   
r 
E  or    

r 
H .  All physically realizable fields must decay to zero at infinity.

This is the radiation condition, which can be expressed as
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Absorbing Boundary Conditions (2)

If the radiation condition is applied at a finite distance r that is in the far field of the scat-
terer, then there is no error.  The higher order terms will be forced to zero by equating
fields on the boundary

E ff =
Ke− jkr

r   
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Outside S

S

Scatterer

If the boundary condition is applied at a distance r that is in the near field, then the bound-
ary condition is in error.  Waves will be set up inside S to match the error terms at the
boundary.   In the above example, the error will be on the order of 1/ r2

 denoted O(r−2 ).
Higher order boundary conditions can be derived.  For example2,
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where ( )ψψ
rr

××−= rrtan , satisfies the Nth order condition: O(r−2 N −1).
                                                
2 A. Pederson, “Absorbing Boundary Conditions for the Vector Wave Equation,” Microwave & Optical Tech. Lett., vol. 1, pp.62-64.
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Absorbing Boundary Conditions (3)
Example: For a second order condition the error is O(r−5 ).  The exact field at distance
r has an infinite number of terms:
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Note:
• Low order boundary conditions must be used at large r or significant errors occur.

However, this requires a larger computational domain (i.e., more basis functions).
• Higher order boundary conditions can be applied closer to the surface, but by are more

complex and difficult to implement.
• Note that an increasing number of derivatives are required as the order increases.



Version 4 (Nov. 2003) 14

Absorbing Boundary Conditions (4)

There are many forms of absorbing boundary conditions, but in general

1. They are all derived from the radiation conditions as R → ∞
2. ABCs are equivalent to a surface impedance boundary condition
3. The particular form depends on the distance from the scattering surface at which they

are applied.  Relatively simple equations (first order) can be used when applied far
from the target ( oo λλ 21 − , where oλ  is the free space wavelength).

4. ABCs applied on conformal surfaces are more complex than those applied on
coordinate variable constant planes

Another example is the first order conformal ABC based on geometrical optics
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FEM Subdomains (1)
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FEM Subdomains (2)

For two-dimensional problems triangular subdomains are used.  For triangle e, edge k:
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The edge function for edge n has only a tangential component across edge n and only
normal components across the other two edges.  The field within triangle e is a
superposition of the three edge components
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FEM Subdomains (3)

For three-dimensional problems, tetrahedra are generally used

  
r 

W 1 = l1 L1∇L2 − L2∇L1( )

EXAMPLE: EDGE ELEMENT ASSOCIATED WITH EDGE 1

L2 =
VOLUME P234
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The field associated with edge 6 is shown in the figure.  Note that:

1. The field turns around edge 6 (which has endpoints 3 and 4).
2. The field is normal to the planes containing nodes 3 and 4.
3. There is tangential continuity across faces
4. There are six edge elements per tetrahedron.  Some may be shared with adjacent

tetrahedra.
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Plate RCS Using HFSS (1)

The High Frequency Structures Simulator (HFSS) is used to solve transmission line, antenna,
and electromagnetic scattering problems using FEM.  It has a powerful graphical user’s
interface (GUI) for building structures, assigning excitations, meshing, computational
parameters, and post processing.

Setup for a square plate:

• frequency: 7.5 MHz
(40 m wavelength)

• plate dimensions: 200
m by 200 m in the x-y
plane (5 wavelengths
square)

• plate thickness: 0.1 m
• radiation box

dimensions: 220 m by
220 m by 40 m

RECTANGULAR PLATE

RADIATION BOUNDARY
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Plate RCS Using HFSS (2)

HFSS has its own computer-aided design (CAD) interface to define the geometry.  Drawing
data can also be imported from other CAD software packages.  HFSS automatically meshes
the target and surrounding computational space (the “radiation box”).  Radiation boundary
conditions are applied on the surfaces of the radiation box.

Close-up of plate mesh Close-up of radiation box mesh
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Plate RCS Using HFSS (3)

Bistatic RCS of the square plate for TM polarized o0=θ incidence.
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Plate RCS Using HFSS (4)

Bistatic RCS of the square plate for TM polarized o45=θ incidence.
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Aircraft Model in HFSS

Gripen aircraft model with
cylindrical computational boundary

Rendered Aircraft (red is dielectric)
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Aircraft Bistatic RCS From HFSS

 for 90φφσ θ φ= = o
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FEM Summary

• FEM is a frequency domain method

• Advantages include geometric and material adaptability, sparse matrices, and
compatibility with other engineering analyses

• Approximate grid termination techniques include

1. Perfectly matched layers – not physically realizable, but good for computational
purposes

2. Absorbing boundary conditions – complicated when the ABC is applied close to
the target surface; simple when far away, but not “node efficient”

• Rigorous termination of the grid requires solving an integral equation for the surface
currents on the grid boundary using MM (this is referred to as the finite element –
boundary integral method, FE-BI)

1. Requires solution of the FEM and MM matrix equations simultaneously
2. The MM partition is dense; the FEM partition is sparse.  Therefore the

computational intensity has increased substantially.


